
A O-A 11 992 INSTITUTE FOR SOFTWARE
ENGINEERING PALO

ALTO CA
F/6 9/2

QUEUEING NETWORK ANALYSIS IN SOFTWARE PHYSICSP.9LN RITR OU A78COh
APR 79 L M TRAISTER NOOOll-78f-Oll f

UNCLASSIFIED ML

lin Emorsmo

LEVEL

QUEUEING NETWORK ANALYSIS IN SOFTWARE PHYSICS

by

L. M.!Traister

April, 1979

Institute for Software Engineering
P.O. Box 637, Palo Alto, CA 94303

-4 DTIC

SECTE0
, .AG 14 1981

DISTjiir4TJT1. N f5rrATE ?- D
Apprcv: d for pubiic. r.' se

8Dution 7 2

8 722

SECTION I

ABSTRACT

,2UEUEING V;ETWORK A.VALYS:S IN SCFTRE PSC

L. M. Traister
April, 1979

Queueing network models have achieved a prominent place in the modelling

of computer system performance. Recent formulations of operational

methods by Buzen and others have greatly facilitated their practical use.

On the other hand, Kolence's software physics has addressed the problem

of appropriate metrics for both performance and capacity of processors

and systems and for the workloads with which they interact.

This paper integrates the methods of operational queueing network analysis

into an extension of software physics. A significant feature of this

approach is that parameters of the equipment and of the workload are not

confounded in the analysis but are kept distinct, finally combining in

the model computations proper. The objectives, principles and assumptions

are stated and the basic quantities are defined. The fundamental opera-

tional laws and certain of the algorithms are derived and illustrated

with examples.

Accession For

NTIS rRA&1

DTIC TAB

Justifi ion

1 si t. _'uAv,, .i ~ I., , ,]c

This work was supported in part by the Office of Naval Research

under Contract number N00014-78-C-0768
V'

SECTION II

BACKGROUND AND OBJECTIVES

1.0 THE BACKGROUND OF OPERATIONAL ANALYSIS

Queueing network analysis is a means of arriving at the quantities

that describe the performance of systems of limited resources. It

provides understanding of how these systems react to the demands

made upon them. Until recently, the queueing analysis methodology

for computing systems has been more or less a direct adaptation of

that for the traditional applications in that the performance quan-

tities of response time, waiting time, server utilizations and so

on are described by statistical distributions resulting from the

statistical descriptions of the "customer" arrival rates and server

service rates. Frequently this stochastic approach leads to formu-

lations of much complexity, often with little hope of thorough

solution. Moreover the focus has been observed to be more on the

pursuit of nice, closed mathematical solutions, with less regard

to providing a reasonably accurate assessment for the practical

situation. As Newell [NEWE71] has commented, the situation has

nearly become one of "solutions in search of a problem."

More recently, however, there has been work which maintains touch

with the practical situation both in its formulation of relation-

ships by insisting on testability and in its use of quantities

which must be measurable in an implemented system. Buzen, in

particular has argued for and developed such an approach and

named it Operational Analysis. He has through its development

created a useful approach to performance analysis which is more

readily comprehended and put into practice.

2.0 THE BACKGROUND OF SOFTWARE PHYSICS

Kolence [KOLE76] has provided us with an approach to quantification

and measurement of computer system attributes that is intimately

connected with performance. These are the concepts and metrics

-2-

for software work, software and hardware execution times and the

derived quantity of software power. The demand that a specific

function places on equipment is measured in terms of work require-

ment; the capacity of the equipment to respond is measured in terms

of power, that is, work divided by time. In addition to all this

he has provided a hierarchical structure for system architecture

that permits natural decompositions. These structural properties

are explored in some detail in [KOVA79]. What is of importance

for us here is that in using the software physics work demand and

equipment power quantities rather than the more traditional quanti-

ties (in queueing analysis) of service time and visit ratios, we

are able to keep properties of the workload (work demand and dis-

tribution) and properties of the equipment (software power) dis-

tinct in expression, so that the impact of each is separately

visible and each is separately manipulable.

3.0 THE OBJECTIVE OF THIS EFFORT

What we have set out to realize in this current work is the uniting

of the operational approach to computing systems performance

analysis with the structural concepts and metrics of software

physics. By doing so, we hope at least to establish a basis for

a natural, engineering approach to operational queueing analysis

for computing systems. Some of the benefits of this approach will

be encountered in this paper, such as the isolation of workload and

equipment properties discussed above or the simple way in which

work distribution can be specified. In other cases we observe that

just the translation of conventional forms into software physics

notation can be revealing in isolating the parameters which affect

performance. But we happily expect that this is just a beginning;

that having put these formulations to use over extended periods,

we will gain better insight not only into the systems that they

describe but into the extension of the theory itself, thus giving

an independent life to this mode of formulation and perception.

-3-

SECTION III

REQUIREMENTS, PRINCIPLES AND ASSUMPTIONS

3.0 INTRODUCTION

We discuss here some of the requirements for a methodology for

the modelling and validation of computing system performance

in which theory and practical application can be integrated.

Furthermore, we state the basic principles and assumptions

which support a straightforward and tractable development of

the integrated methodology.

3.1 REQUIREMENTS - MODELLING AND VALIDATION

Briefly stated, our objective is to provide mathematical entities

which characterize the performance of computer systems, that is,

a mathematical model. A fundamental requirement to our develop-

ment is that all hypotheses be capable of verification on the real

system being modelled, a concept which Buzen calls overat cnaZ

testability. Unfortunately, the traditionally invoked methodology

of stochastic modelling does not meet our fundamental requirement.

This is because the basic assertion there is that the probability

distributions of stochastic processes govern or characterize the

behavior of real systems, an assertion that cannot be proved

by measurement. Furthermore, even though stochastic methods are

based on probabalistic considerations, their use describes only

the variability (in the sense of uncertainty) of the quantities

which are the parameters of the model, the process tells us nothing

about the future values of those same quantities. Thus, the problem

of parameter value prediction, as Buzen points out (BUZE77b] is

the same for both operational and stochastic methods and here one

might make use of probabalistic methods among others. However,

this is an issue separate from that of which type of model to employ.

-

-4-i

Concerning the parameterization of the models, we express a

preference for formulations developed around those same quantities

which we already use to characterize the workload or the capability

of processors in a more general context. This naturally leads us

to a choice of formulations based on work demands made on processors

by jobs or transactions (which we will term interactions). The

capability of the processors to service those demands will be

described in terms of work performed per unit time or processor

power. These quantities are in fact those of established software

physics, which indeed characterizes workloads, processors and many

of their interactions. It furthermore has an experimental basis

providing methodology for measurement of many of these same quanti-

ties.

In the subsequent development, then, we will seek to express para-

meters of our models only in terms of established software physics

entities or their simple extensions. In order to facilitate clear

analysis, we wish to keep distinct those quantities which describe

the workload and those which describe the equipment. Note that the

quantities of conventional queueing analysis do not generally pre-

serve this distinction. For example, the conventional "service

time" quantity as in regard to, say, a disk direct access processor,

derives from the action of a workload requirement (block length)

applied to an equipment capability (access time and read/write rate).

The quantities of software physics also carry with them clear speci-

fication for their measurement in a computing system context. These

include the quantities that are the model parameters and those that

describe performance.

3.2 PRINCIPLES AND ASSUMPTIONS

Although we will present these in context as needed, it is useful

to indicate at once some of the basic principles and assumptions

which will shape our operational methodology.

-5-

3.2.1 Flow Balance

This conservation principle states that every arriving unit of

work demand to a configuration (system) or subconfiguration

(subsystem or processor) is matched by a corresponding completion

of work there. For finite time intervals this statement only

approximates true behavior. Related to this is another conserva-

tion principle concerning states of the system, that of state

transition baZance, which we discuss later.

3.2.2 Overlap of Subconfigurations

We assume that no single interaction (job or transaction) overlaps

its use of disjoint subconfigurations. In particular, when we

consider the subconfiguration to be a processor, a single inter-

action is present at only one processor at any given instant in

time. Note that this depends on some strict definitions of "job"

or "transaction" since, for example, all work could be considered

as part of the one job called "the operating system." We will

provide such definition later under the discussion of the "software

unit" entity of software physics.

3.2.3 Single-Step Behavior

This assumption asserts that if we resolve time finely enough

we will observe changes in the system only at a single pair of

processors, appearing as the movement of a request from one

processor to another. Thus we eliminate from consideration the

simultaneous "movement" of requests in the system.

3.2.4 Processor Homogeneity

This assumption states that the output rate (power) of a processor

is determined only by its queue length and is otherwise unaffected

by the arrangement of work elsewhere in the system. This assumption

is violated in practice to some extent by the "blocking" of one

processor by another. For example as when a disk unit must wait for

a buffer to be cleared by a cpu or when occasionally a disk utilizing

RPS (rotational position sensing) cannot connect to its channel

-6-

for transmission of data, this due to the use of the channel

by another disk unit. The homogeneity assumption implies then

that the processor is busy if there is work waiting for it. The

stochastic counterpart to this assumtption is that interdeparture

times at a device are exponentially distributed. In conventional

operational analysis, the counterpart is termed device honogeneity,

but here we wish to anticipate the possibility of a subconfiguration

of equipment being considered a processor.

3.2.5 Routing Homogeneity

This assumption states that the proportion of work arriving to

the system that is routed to a given processor may depend only

on the multiprogramming level, that is, the concurrent number of

interactions in the system. Thus the arrangement of work elsewhere

in the system or length of queue at the processor itself does not

affect the proportion of work routed there. This assumption, for

example, allows for increased work at a paging device with increased

multiprogramming level. The stochastic counterpart of this assump-

tion is that job routing follows an ergodic Markov chain.

3.2.6 Decomposition

This principle states that when state transitions between nested

subsystems are small in number compared to the number of transi-

tions within the composite, we may reasonably well replace the

contained subsystem with an equivalent processor. The character-

istics of this equivalent processor are to be determined from a study

in isolation of the contained subsystem. We will make use of

this principle later in the analysis of an on-line terminal system.

3.2.7 Invariance Assumptions

These are not specific assumptions but rather a type of assumption.

When a performance analyst assumes explicitly or otherwise that

the change of a given workload or processor parameter will not

change any other parameters, the assumption is being made that

-7-

those parameters are invariant under the change. Very often it

is safe to make such an assumption, but there are exceptions.

For example, if through priority setting, jobs of one class, say

A, are given preference over jobs of another class, say B, the

average multiprogramming level of class B jobs may decrease if

the number of class A jobs are increased. Thus it is suggested

that these a-umptions be made explicit so that unexpected results

in model validation can be effectively researched and explained.

L . _ _-8-

SECTION IV

FUNDAMENTAL QUANTITIES

I
4.0 INTRODUCTION

This section presents the software physics quantities which are

the basis for formulating the laws and relationships subsequently

given. These quantities are either primary (directly observable)

or derived and depend on time, work or the logical interconnection

of equipment. They are:

(1) Properties of the Ecuiprment and Ir~eenta;ion described as

the presence of processors with potential performance charac-

teristics.

(2) Properties of the LogicaL Equipment Tooaooy. The description

of configurations in software physics; queueing networks.

(3) Work denand presented to the configuration by a specific

task software unit.

(4) Quantities which describe or predict the verfornance of the

system with respect to the tasks defined by work demand.

Our mode of formulation of laws and relationships will generally

allow expression in terms of distinct quantities from each of the

above groups.

4.1 NOTATION

Software Physics quantities are given in the functional notation:

O(V 1; V 2)

where the factor Q is a quality or property and V, and IV are each

lists of designators. The list VI designates the software unit,

that is, the program and data of the specific execution of a task

-9-

or set of tasks. The list V, designates the logical subconfigura-

tions in the system. Software units, configurations and logical

subconfigurations are more fully discussed in [KOLE76] and [KOVA79].

For the list 7, (software units) we will use:

- The full workload.

S or S. - Any specific software unit (or member of a

collection of software units) as designated

by the discussion.

For the list 7, (equipment) we will use:

- The full configuration.

,(or Xi) - These designate processors (devices) or

collections of them which are characterized

by tree structures.

cru) Devices may be named directly as needed in
disk)ape) - 2 descriptions of the configuration.

etc.)

As the property Q in general describes qualities that depend on

the containment of one software unit by another or a piece or

class of equipment by another, the lists are made to describe

these relationships by given the contai~ned unit on the left and

the Containing unit on the right. Thus if 3 =S-, then

Q(S1.0S; X)

is the property Q of the equipment X operating with software unit

SIrelative to the execution of the containing unit S.

As an example, the common notion of the utilization of a device

X is denoted by:

-10-

which is the time of execution of 'X with respect to that of 'i on

behalf of all software units contained in the full workload.

But

is the utilization (full conditional) of the same equipment with

its time of execution counted only when it is on behalf of the

software unit S.

Finally, it is convenient to denote the collection of values over

all equipment classes of the property ., in an array or vector form.

Thus

denotes the array with elements x, ' etc. where the

collection of X, constitute the full configuration '" or some

specifically designated set of equipment classes.

A null position indicated in the list V, by a dot, indicates that

the elements of the array are the values of in . ."e equip-

ment relative to con toinina equipment.

Thus

is the array of elements tc, c with the

designations of the X. either left arbitrary or defined by the

context.

4.2 BASIC PROPERTIES

The quantities of time and work are fundamental to the description

of the occurrence of events and performance in an executing system.

-ii-

4.2.1 Execution Time: Ix(S;x)

This quantity measures the active time for the software unit

designated by S on the subconfiguration (equipment) designated

by X. It may thus be thought as a clock which runs only when

the designated software unit and equipment are active. This

definition encompasses both the "busy time" and "observational

interval" of conventional operational analysis, but differs in

that unlike the conventional formulation:

i) Time may be counted on behalf of specific software units

as well as the full workload.

ii) 7x(L;), the execution time of the full workload on the

full configuration does not count idle time (no constituent

active), whereas the conventional "observation interval"

may do so.

Note also that the reference to "busy time" above was to that

as defined in operational analysis and does not include time

that a device is blocked (e.g., a disk in seek or RPS delay).

These points are further discussed in [KOVA79].

4.2.2 Work: W(S;X)

This quantity in software physics describes events accomplished

or demanded. Work performed is orerationally defined to be

equal to the number of bytes (character containers of 8 bits)

transferred to or from a processor memory. Thus one unit of

work is performed for each byte written to a device (or memory).

The unit of work has been designated the "WORK", denoted by W.

As with execution time, work is counted on behalf of the software

unit and equipment designated by S and X, respectively.

Thus, for example, W(S;cpu) measures work performed by the cpu

(bytes transferred to a memory) on behalf of the software unit S.

-12-

Note that performing a unit of software physics work represents

an event at a more elementary level than does the "request" of

standard queueing theory or operational analysis. The grouping

of work into reauests or blocks will be considered to be a

property of the inrrlementa. ion.

4.3 EQUIPMENT AND IMPLEMENTATION PROPERTIES

The quantities in this group describe the potentiaZ work perform-

ance capability of equipment and the implementation parameters

on which this capability depends. Processors or collections of

them are frequently referred to as configurations, or more generally

sUbcofi-jgrations. The topological properties of equipment inter-

connections is discussed in the next section.

4.3.1 Absolute Power: P(*;X), (or P(x), P(S;X)

This is a derived quantity of software physics defined by:

p;X) = W(.;X)

Tx(.;X)

This expression states that any work performed by the device or

configuration denoted by X is to be divided by the time X is

active. Absolute power may be developed using the conditions

existing for a specific software unit in which case we define

accordingly:

P(S;x) = W(S;X)
Tx (S; X)

Implementation parameters may be included in the list following

X if desired to indicate that a specific value of say, disk

seek time, or record size was used for requests on behalf of S.

Absolute power at the configuration level, i.e.,

W(L;t)
Tx(L;P)

can be interpreted as overall system throughput on a byte basis

in that it gives the rate of work completion in the system as a

whole as measured by the elapsed time clock.

-13-

I
4.3.2 Blocksize Work: W12<S;X)

This quantity is an implementation parameter which specifies

the quantity of work performed each time a specific interaction

visits the subconfiguration X. It thus corresponds to the work

per request when "request" is defined to be an unbrok n sequence

of demands at the device on behalf of one job or transaction

user. So it is the amount of work done by the device on behalf

of the software unit S, uninterrupted by the execution of another

device on behalf of that same software unit.

4.4 PROPERTIES OF THE EQUIPMENT TOPOLOGY

We consider here two conceptions of the way in which the logical

interconnection of equipment is described. The first is that of

conventional queueing network analysis and describes how the

processors form a conceptual network as a consequence of the way

requests are routed in the system. From this we develop the Buzen

Central Server Models (BCSM) for batch and terminal driven systems.

The second conceptualization is that of the logical con figuraions

and subconfigurations of software physics. This mode of descrip-

tion visualizes the equipment and the paths to it as forming rooted

trees. The useful properties derived from this conception include

the natural way in which work demand for a task can be partitioned

in conformance with the structure of the logical systems. This

structuring takes advantage of inclusion properties and so forms

the basis for analysis using natural system decompositions.

4.4.1 Queueing Networks and the Routing of Requests

A queueing network is a conceptualization of how the demands of

interactions enter the system, circulate from device to device

(having received service after possibly entering a queue) and

finally complete. This last event is represented by showing

that the interaction leaves the system. The transitions from

device to device or to exit are associated with probabilities

-14-

(.(S), where S is the software unit being tracked. We

frequently assume that all interactions have the same q. (5)

and simply write q... The subscript o for i denotes routing to

a device from outside the system, while 0 for j denotes the inter-

actions departure from the system. Figure 4.4.1 shows this network

conception in general. The dashed line marked "closed" is to model

the situation where the number,, of interactions circulating in

the network is held fixed - as soon as one leaves, another takes

its place. Closed networks represent systems operating under a

backlog.

Oq.j

11N OUT

Figure 4.4.1

Devices in a Queueing Network

In open networks, the number of interactions in the network may

vary. In these, one generally knows the system throughput and

wishes to determine the steady state value of N and the way it

distributes to the various devices.

As assumption that is generally made is that the interactions

do not overlap their use of devices; that is, work on behalf of

an interaction appears in queue or in service at one and only

one device at a time. Travel time between devices is assumed

-15-

to be zero, but if it is significant as in the case when a

long transmission line is in the network, one can substitute

a device having a power which gives the appropriate delay time.

Two network configurations of special interest are those based

on Buzen's control server model (BCSM). These are so named

because one device (the cpu) acts in a pivotal capacity. That

is, an interaction always makes a request visit to the cpu

before and after making a request of any other device or exiting

the system. This is depicted in Figure 4.4.2 which is the batch

central server system. In Figure 4.4.3 the central server forms

the computer subsystem for a terminal driven system. In this

latter configuration, M terminal users are signed on and submit

interactions to the central subsystem. When processing is

complete, the user spends Z units of "think time" before entering

the next interaction. During the processing interval, the user's

terminal is blocked, that is, it can enter no other interactions.

1o+q 2 + ' ' + q l k = 1 .-C

IN X OUT -

Figure 4.4.2

Buzen's Central Server Network

-16-

TERMINAL SUBSYSTEM

CENTRAL SUBSYSTEM

IN OUT

M TERMINALS

Z THINK TIME
K DEVICES N "JOBS"

Figure 4.4.3

Terminal System with Central Server

4.4.2 Configurations and Subconfigurations in Software Physics

The software physics conception of the logical structure of compu-

ting systems is that of rooted trees formed by the graph union of

all possible data paths that may occur in the course of some execu-

tion. A full discussion of this concept and these properties is

given in [KOVA79]; we shall only give a description of a few of

these properties here.

The concept of the configuration is built on the notion of the

conventional graph of equipment interconnection, an example of

which is given in Figure 4.4.4.

Augmentations are next made to develop ZoqicaZ subconfigurations.

This is done by the operation of graph composition which is the

union of instantaneous paths to drives plus the intrusion of a

highest level mode, if one does not already exist. For example

in order to form the tape logical subconfiguration, one forms the

union of all paths to tape drives including the channel and con-

troller devices for them and inserts a node labeled "TAPE."

Examples are shown for both disk and tape logical subconfigurations

in Figure 4.4.5.

-17-

34 E4I
w
EC

ILIII.E-4
H. :VI7I

zi

Ln->8--

DISK DISK DISK TAPE TP

C.U. C.U. C.. CU.CU

DRIVE

DRIVE2

THE DISK SUBCONFIGURATION THE TAPE SUBCONFIGURATION

EQUIPMENT CLASS SUECONFIGURATIONS

Figure 4.4.5

Most important is that each node defines a relative root which

has the upper lattice property, that is, every node contains or

covers the properties of all nodes dependent on it. So for

example, in Figure 4.4.6 we observe that the "CHAN 2" logical

subconfiguration is both a tape and a disk channel subconfigura-

tion. In the same figure, 4 is the entire input/output logical
subconfiguration, Y is the cpu logical subconfiguration.

The description of configurations by these rooted tree structures

will be useful to us in describing overall how work is distributed

to equipment. It is also a natural means for dealing with the

decomposition of systems into subsystems and so has application

in conventional queueing networks having subsystems as servers.

-20-

z >L
0

0

ol

E-42
Itl

zz

CNN

mz 0
u- m

4.4.3 The Configuration and the Bulk Distribution of Work

Recall that the symbol for an arbitrary configuration is X.

When we need to indicate containment of one subconfiguration by

another we do this by use of one or more asterisks (*) in the

subscript of X. The asterisk represents a string of one or more

subscript values. In a given context, if we use the asterisk to

represent a string of subscripts, we must remember that we are

referring to that same string whenever an asterisk occurs. Addi-

tional asterisks in the subscript thus represent additionaZ

levels of subscripting (depth in the structure) to that indicated

by the first. Thus X, refers to a subconfiguration at least one

level deeper than X and X,* is at least one level deeper than X,

and so on. If we write

F(S;x,x,,)

then we are summing the F's for all subconfigurations that are at

least two levels below X etc. Hierarchies of software units may

be handled in the same way.

Software physics describes the demands made on subconfigurations

and processors in terms of the quantity of work that each performs.

However, we will need to refer to quantities of work demand arriv)ng

to the system denoted by the vector:

Wa(S;i) = {Wa(S;X×), Wa(S;X,),-...}

where the {X,.} represent a partition of 1p; that is: X;) X. 0

The ratios U Xi

Wa(S;x.)
D(S;xi',) = Wa(S;4p) {Xi} a partition of 4'

are called the bulk ;-e'zk distributions of the arriving work and

are denoted by the vector:

D {(S;x,,q)) D

-22-

Note that we cannot yet say anything about the measured work

performed at the Xi relates to the arriving Wa(S;x,). This must

wait for a conservation assumption we will make presently.

A specific quantity of arriving work demand is that related to

a single or mean interaction (job, transaction, or the like).

This vector quantity is denoted:

Wd(S;P) = {Wd(S;x.), Wd(S;x.J,..

Again, the magnitude is given by

Sv(s;w Wd (S;

Now for a given software unit S (an interaction or collection

of interactions):

Wd(S;Xi) Wa (5; X)

t4 S;') Wa(S;W) P)

since the Wa and Wd measure the same things but over different

time bases.

In our present discussion we will use the X,. as if they were

devices, remembering that they can just as well be proper subconfig-

urations. What we leave for a subsequent analysis is how we may

in general substitute a subconfiguration for collections of devices

(or contained subconfigurations). We will thus be concerned with

work distributions of

Wa(S;) = Wa(S;iP'D(S;p) = [Wa(S;x i) 'D(S;4)i -

and

Wd(S;) = Wd(S;).D(S;p) = [Wd(S;xi).D(S;P)

where the Xi are processors or their equivalents in the system.

The above distributions of work are on a buZk basis. That is,

they show how work distributes on the average to the devices (or

subconfigurations). It will develop later that these will suffice

as workload specification in the calculation of the other descrip-

tive quantities we seek.

-23-

,4

It is also possible to formulate distribution numbers for proper

subconfigurations. This is done thoroughly in [KOVA79], so we

only give an indication here. If the quantity of work arriving

to a proper subconfiguration configuration ., is va ,J; then,

= is the bulk distribution of work

for the subconfiguration X, to 4

4.5 PERFORMANCE QUANTITIES

These quantities tell of the rates at which the given configuration

is processing the required workload and consequently of the (response)

time that we must wait for an interaction to complete. Intimately

connected with these quantities are the : c- ezuee

which indicate how much of the device capacity we use on behalf of

some specific interactions or the total workload and the lengths

of queues at the device.

4.5.1 Relative Power: P(S.,S3;X,x) also ?(;x,x) ?(SIZ'4

This quantity is most generally defined as

(S;.

and gives the rate of performing work on behalf of the software
unit S. on the subconfiguration (* relative to the clock which

counts time when S and X are active. It is sometimes called

throughput power for it gives the relative rate of work unit request

completions. This rate must not be confused with the notion of

"service rate" from conventional queueing analysis. This latter

quantity is the request completion rate relative to the clock

which is active only when the server is busy and is therefore

more like the software physics quantity of bz .sch -e power.

-24-

The quantity

called the software conditional relative power, may be interpreted

as the overall work level throughput for the software unit ;. It

is the work completion rate on behalf of 3 as measured by the

system elapsed time clock.

Notice that
(s;X,)

P(S,Z;!j) ,. = I " ""

where {X,.} is a partition of p. So the software conditional

relative power is the sum of the fully conditional relative powers

over a partition of the configuration.

4.5.2 Utilization: U'S., S;X,,} also :'(S;,, X)

This quantity is defined most generally as:

Tx(Si*,x,)

Tx(S;x)

and gives the ratio of time that the software unit S. is active

on subconfiguration X, to the time the containing software unit

S is active on a containing subconfiguration. The term "utilization"

encountered in conventional parlance is:

Tx(L;X i)U(L;Xi'$) Tx(L;) !

That is, the ratio of the unconditional execution time on processor

Xi to the execution time of the full workload on the full config-

uration.

-25-

4.5.3 The System State: Vectors: WW(S) = ['J,.,''',,v'S)

or

.1(3) = [J (3) -' I
Scalars: A)(J;q) .'7 i*'S;')

The vector quantity shows how the work or requests in the system

for software unit S are distributed at some instant in time to

each of the ' devices (or subconfigurations). Thus W. units of

work are in aueue or in service at device in the work formulation.

Similarly n'. requests are in queue or in service at device in

the request formulation. Note that the scalar total waiting work

:w ,,;= Y ...s)
i=Z

or in terms of requests

k
V (S;~p

i=1Z

The work and request forms of these quantities are related by

v. KS) = Wb(S;X) "n.(S)

where is the average processor blocksize work for the software

unit S.

4.5.4 System Throughput: P(SL;) also x (S)

System Response Time.: Th(S;)

Under the conditions of the conservation of work is the configura-

tion the software conditional relative power for the entire con-

figuration

P(S,L;)

may be interpreted as throughput on a work level basis for the

entire system. This means that for a sufficiently extended period,

-26-

............................

Tr-(L$;,) the rate of interaction completion X,,2) (this quantity

measured externally as jobs or transactions completed) is given by:

X ,S W(SA) 1
Wd(S;,p) Tx(L;p)

Wd(S;)

System response time is that busy time measured by the clock

at level 0 for an interaction to enter the system, make visits to

the servers (and wait in queues, if necessary) and finally exit

the P configuration. It is the time that the y configuration is

busy with (including delay in i) an S. £ S interaction. It is

identical to the response time, R, of conventional operational

analysis.

-27-

SECTION V

LAWS AND RELATIONS

5.0 INTRODUCTION

We now present some relations between the defined quantities of

the last section. All the demonstrations are operational in the

sense that no stochastic assumptions are made and that the quanti-

ties are to be obtained from direct measurement over finite obser-

vation intervals. Included are immediate relations between the

fundamental quantities as well as work flow relations derived from

consideration of entire systems in balanced flow.

5.1 General Laws and Relations

These are valid in both balanced and non-balanced states of a

system, that is, they depend only on work having arrived to a

server and not on any conservation principles over the network as

a whole.

5.1.1 Utilization Law

From the definitions for utilization

Tx(S;x i)U(S,L;x,p)=TxL)
Tx(;)

and for relative and absolute powers, we have:

W(S;x i) W(S;x i) Tx(S;x i)P(S'L;xi'p) =Tx(L; p) =
-xSx)'xS

Tx(;0(S;x,)T(S)

from which

P(S,L;Xi,) = P(S;Xi).U(S,L;XjiP)

and so

U(S,L;XP) = p(S,;Xi) (utilization law)

I P(S;x.)

when S = L, we have more simply:

P(L;xi,,p)

(L;Xi,0 -= p(L;xi
)

-28-

5.1.2 Little's Law

Enormously useful in the analysis of queueing behavior is Little's

Law, so named for it was proved under very general conditions by

J.D.C. Little in 1961. However, it existed for many years before

that as what Kleinrock calls a "folk theorem." It relates response

time of a system (or device or queue itself) to the amount of work

waiting. The relationship is:

Tw(S;x) = ((5.1.)

where Tw(S;X.) is the mean waiting time at subconfiguration X,

and Ww(S;x.) is the mean amount of work waiting for or in service

at Xi .

The conventional operational analysis formulation is:

nl.

R. = - where n. is the mean number of reaues-s waitingXI;

for or in service at device i and Xi is the request

completion rate.

To show the software physics formulation of this result, consider

that we observe and count the work waiting for or in service

(called the waiting work) as a function of time.

5k.

4k.

Ww(S;Xi) 3k,

(bytes)
2k

1k

1 2 3 4 5 6 7 8 9

Figure 5.1.1

Waiting Work at A Subconfiguration

(Example)

-29-

Now if we let A(S;Xi) be the area under the graph of waiting work,

we write:

vw (S; X,)A(5;x. = Ww(S;xi)At

- t=O

The average height of the graph is:

A(S;X i)Ww(SXi)= 7x(L; P)

This is the average amount of work in the system. Note that we

use the elapsed time 2-(J;w) as our clock.

Now the average completion rate is 5$'S;x i), the work done divided

by the elapsed time or

W(S;X1.)S(S;xi). (;) = P(S;xi")
Tx (L;P) 2

So the average time that a unit of work demand spends in the

system is:

W (S;) _w(S;X)

xi) = 6(S;Xi) P(Sr;X,,)

Notice that 2w(S;Xi) is not a rate per unit of work but a :'e.

The relationship tells us nothing about how the work arrives to

or departs from the system. In particular, if work arrives in

batched re ue-ts and is served under a first-come-first-served

(FCFS) discipline, all unit work demands in the request wait for

their service concurrent"y.

As an example, consider the graph of Figure 5.1.1. The accumulated

waiting time over the 10 second period is 19Kw seconds. So the

average waiting work r(S;x, is 1.9 Kw. The relative power is

the work completed divided by the same 10 seconds, i.e.,

-30-

P(S, r ""

"(S' X) ((,) = i 0 - =600 W/sec.

(there were 6 - 1KB completions)

Consequently the mean waiting time at X. is

:w(S;X.) = 2* / or about 3.17 seconds.

c'00 W/o

5.2 FLOW BALANCE AND THROUGHPUTS

We now discuss a work conservation principle at the configuration

and system state transition levels. This principle is called one

of flow balance for as a consequence processing rates of individual

subconfigurations are related to each other and to the interaction

level rate of processing (called the throughput).

5.2.1 Configuration Work Flow Balance

At a macroscopic level we observe the arrival of a vector of work

demand for a set of interactions Wa('S;l) and now wish to establish

a relationship between this quantity and the work performed inside

the system. What we require is that for large enough values of

7x(L;p) (elapsed time), the performed work of a subconfiguration

should be very nearly the same as the total observed to arrive times

the bulk distribution quantity for that subconfiguration. That is:

IW(S;x i) - Wa(S;«)D(S;Xi)j << W(S;Xi)

for any subconfiguration (or device) Xi where

Wa(S;) = Ya(S;x ,) for any partition {X,} of

so, approximately:

IW(S;x;) - Wa(S;q).D(S;x.,q)I = 0

-31-

This conservation assumption leads us to the principle of
configuration work ,f lw balance

Wa(S; p) W(S;1) _

rx(;) Tx(L;p) D(S;Xi,)

or (S,(L; -5.2.la)

= for any subconfiguration X,

Since

and

P(S,L;xi,) = P(S,Lp;)
i 7

we may rewrite the right hand side of (5.2.1a) without a subscript

giving:

P(S,L;xi,p)
,; = (S;XiP) (5.2.1b)

for any subconfiguration Xi.

We may now interpret P(S,L;) as the work level throughput of the

configuration and the P(S,L;x.) as the work level throughputs

of the Xi. To develop a throughput at the interaction level we

recall that each interaction requires work:

Wd(S;p) = Wd(S;x i)
i 7

Multiplying (5.2.1b) on both sides by this amount of work we obtain:

P(S,L;Xi,)
P(S,L;)Wd(S;) Wd(S;X.) (5.2.2a)

or P(S,L;xiA)
x(S = (S (5.2.2b)
0 Wd(S;Xi)

for any subconfiguration Xi where X0 (S) is the interaction level

throughput for interactions belonging to S and Xi is any subconfigu-

ration (or device) belonging to p.

-32-

Equations (5.2.2a,b) tell us what device level throughput must

be achieved at each device in order to sustain a configuration

work throughput, P(S,L;t), or interaction throughput, XC t',

and so are called the Forced Flow Laws.

5.2.2 Flow Balance in General Queueing Networks

In traditional formulations of queueing networks, work demands

for a given job are imagined to circulate from device to device

with routing determined by the a., and job entry or exit is

thought of as from or to device zero. Conservation of :ransi~ion

equations are written at each node to express flow balance.

That is, for a request size Wb(S;x.)

W(S;x) k W(S X.-) .. a
= a..(5.2.3a)

Wb(S;x . Wb(S;xJ i j =o
j7 ;=O0,-k

This is an expression of the fact that the number of requests

completed at X. is the same as the total number which arrived

from all sources connected (in the operational sense) to j.

From the definition of relative power, we get after dividing

both sides of (5.2.3a) by Tx(L;t):

P(S,L;x ,) = k P(S,L;xi,W)

Wb(S;x.) - xi (5.2.3b)

Sxi) j = O,.",k

whence:

k Wb (S;)P(,;Xo =I=0 P(SLaxi,')'W(. x) ai (5.2.3c)

i=O Wb(S;xi) ii
j = O,."-,k

We note that the quantity P(S,L;Xo,p) and Wb(S;X 0) represent rates

and events at the external interaction level and are given by:

k
P(S,L;X3 ,') = P(S,L;) = P P(SL;xI,)H kW(S;Xo) ; Wd(S;i) Wd(S;xi)

i=1

-33-

The expressions (5.2.3c) are called the Flow Balance Node

Equations. The quantity
k
SP (S,:.;x,p)

?(S,L;ip) = i'=1
Wd (3;) W ,S ,¢(S; X.

is just the external interaction throughput X,1CS) when :x7.;)

is sufficiently large.

In Buzen's operational analysis [DENN78], the ratios of device

to external interaction throughput are defined as visi razios by

V. = "./'"o where the X. are the device request completion
rates.

Here the analogous quantities are obtained by taking the ratios

of device relative power with the software conditional i-level

power, that is:

P(S,L;Xi,) W(S;x i.)

=) W D(S;xi,4) (5.2.4a)

Equation (5.2.4a) shows that each byte of work completed by

requires D(S;xi,$) bytes completed by X, that is, V is a "per

byte" visit ratio. For a completion at the interaction level we

observe a visit ratio:

V*(S;xi) = V(S;xi).Wd(S;P) =D(;xi).Wd(3;,)

= Wd(S;X i) (5.2.4b)

That is, the quantity Wd(S;x i) , the work demand, is the same quantity

as the number of visits for the transaction or job event.

Now, Equation 5.2.3b can be divided by P(S,L;4) on each side to

give:

Wb (S;x-) k W(S;x)

D(S;,,) - , a + D(S;Xi's) Wb(S;X. (5.2.5)
Wd(S;) o-4-

-34-

- MM "

Equations (5.2.5) are called the Work Distribution Node Equations

and are analogous to the Visit Ratio Equations of conventional

Operational Analysis. It is important to note, however, that the

right hand side of (5.2.5) keeps workload quantities (the distribu-

tion numbers) and implementation quantities (the blocksize work and

routing frequencies) separate, thereby suggesting analyses where

each may be varied independently. The independence of these

quantities is valid only approximately as, in reality, the distri-

bution numbers may be altered to some extent by changes in the

blocksize work (such as when cpu overheads are reduced by increases

in blocksizes).

As a practical matter, we should observe that even if the distri-

bution numbers and blocksize work quantities are known, the (Z+2>.)

routing frequencies cannot be found in the general network since

the equations (5.2.5) are only K+! in number. Fortunately we will

not be required to do so, for our invocation of the product from

solution later on will require us to provide only the interaction

work demand (or distribution numbers) and the absolute subconfigu-

ration powers.

The main use of the Work Distribution Node Equations is in fact

to prove the validity of the product form solution. So for the

distribution numbers themselves, and as a consequence to interac-

tion work demand values, they may be derived from an analysis of

the workload or approximated by measurement of the workload in

execution.

5.2.3 A Special Case - The Buzen Central Server Model (BCSM)

It turns out that for the BCSM (see Figure 4.4.2), the Flow

Balance and Work Distribution Node Equations (5.2.3c and 5.2.5)

simplify greatly and can be solved for the q:. Note first that:

-35-

momh"

q q 0

II

Now the Flow Balance Equations are:

= (3L~,,p)-P(S,,;X.") 02. q, (5.2.6a)

PSk Wb(S;X)

Substituting
P(S,L;Xi,p)

P(S,L;p) = =(.LXjp) DSx. we get:

Wb(S;X 0) Wd(S;4) a(..a

1= Wb(S;Xl) q110 =Wb(S;X, q 1 0 (..a

WTh(S;x1) k WD(S;X) 152.b
D(S;Xl,lp) =Wd(S;i) + (;j Wb(S;Xi) (..b

i=2

Wb(S;X.)
D(S,X.,P) =DCS;X 1 Ab Wb-(S;X2) ,q1 ,; 2. = (5.2.7c)

And from these we get the routing frequencies:

Wb (S; Xi)
q1 0 - Wd(SPp) where WdS;4.) Wd(S;x,)

tX.} a partition of 4)

q1 i = D(S;xi~~P) Wh(S;xi) =2**,

D(S;Xl,q)Wb(S;Xi)

-36-

Notice that substituting this last expression for q. into (5.2.6c)

gives the same result obtained from the Configuration Work Flow

Balance Principle, namely:

= L , ×") (S, ; X, • 0

Although these Configuration Work Flow Balance properties hold in

any node flow balanced network, they are sufficient for the

derivation of the Node Flow Balance Equations only in networks

which preserve the rooted tree type structures of software physics.

The BCSM does in fact do this, if one allows the cpu configuration

to include the input/output devices as a subconfiguration. We can

therefore directly write the node balance equations for the BCSM:

(S; xi, tp

S, i D(S;x1 ,1) P(S,L;X= 2,.

(5.2.8)

5.3 RESPONSE TIME LAWS

5.3.1 General Response Time

If we apply Little's Law to a configuration as a whole, we may

write the response time for a sinale bgize of work demand in an

interaction when there are Yl interactions active for software

unit S:

Th(S.;p) N. E: (5.3.1)
Tbs;. P(s,L;p)

Since

jz n(S)

and multiplying numerator and denominator of (5.3.1) by distribution

numbers -(SX., . :
-?, . . .\)

= P(S,Lx.4,

= ((S;x-)(n.)] ,(S;X,,) (5.3.2)
jV 0

with t[] being the per byte queue plus service time at the indicated

subconfiguration

-37-

What this says in words is that the formulated scheduling here is

such that each byte of interaction work demand for each server exper-

iences a delay plus service time equal to that when there are <.

bytes for software unit 5) in the queue.

For an entire interaction with work demand Wi'3 ,

b(St S = W [(S; J
U ,J

= I t[(S;y>- -.,]Wd(S;X-) (5.3.3)

Again, we may interpret (5.3.3) as giving the total response time

in terms of a "homogenized" product of a response time per byte

(dependent on the multiprogramming level at each server) and byte

level visits per interaction. This formulation may be interpreted

as for a round robin (RR) scheduling algorithm approximating processor

sharing.

Returning to Equation (5.3.2) and multiplying by the work per

interaction, Wd(S;), and by unity in the form of W'S;XJi'S;k.):

V V,
n Wb (S; X.

n.Tb; (SwS;;.

= . . (5.3.4a)* P(S,L;x.,y, ;€i~:

Wa ;-5, " X

• ". (5.3.4b)

For the right hand side of Equations (5.3.4b), the first factor is

the request waiting time at ;< when there are . ,eqests there and the

second term is the number of times requests for an S: E S appear

at X-, that is, the visit ratio of conventional operational

analysis. Equations (5.3.4) give precisely the same waiting time

-38-

(interaction response time) as does (5.3.3), differing only in

the multiplication by unity and the rearrangement of terms.

This form of the equation for Th(S4) can be interpreted as for

a first-come-first-served (FCFS) scheduling algorithm at the

2'~es level, each request being of size y'b(3

5.3.2 Interactive Response Time

By application of Little's Law to an interactive system we can

derive an expression for the response time for an interaction

(here a transac.c.). Referring to Figure 5.3.1, we note that the

X11 I
SII

II
M TERMINALS SYSTEM

Z THINK
TIME

I-- - - ---------- - - - - --

Figure 5.3.1

Observer at an Interactive System

outside observer "sees" the time for an interaction to make a

complete circuit as Fb(Si() - 2, where : is the "think" time of

each signed-on user. That is, if the terminals and the central

system are configuration 4', then the observer measures:

Tb(S;'J=bS,;) + -
T(.;zp') = 7i.

If the number of concurrent users (terminals signed on) is V then

we have by Little's Law:

-39-

(I;p') PM va (5. 3.5a)FP(13L;tp),dl~'

M
SX0 I j

(5.3.5b)

Or as seen by the terminal subsystem:

rb:;p) Z (5.3.6a)

= ,- Z any X. P (5.3.6b)

Equations (5.3.6) are called the Interactive Response Time

Formulas.

Note that since we must have:

Tb(!;) > 1/Xo(7):

it follows that: j
M - ZX (I) > 1 (5.3.7)

-40-

SECTION VI

MULTIPROGRMMING LOAD ANALYSIS

6.0 INTRODUCTION

In this section we will demonstrate queueing network analysis for

configurations which are of the type having product form solutions.

These separable queueing networks were originally studied as sto-

chastic exponential server entities by Jackson, Gordon and Newell

and others. Buzen and Denning [BUZE77] have demonstrated similar

properties for networks with "operational" assumptions. Reiser

[REIS79] points out that queueing networks with product form solu-

tions are robust with regard to routing and service time distribu-

tions, that is, it is the mean values that dominate the solution.

We will investigate both approximate and exact methods for closed

systems. The approximate method is based on a consideration of

asymptotic behavior and has been called "bottleneck analysis" by

Buzen, a particularly appropriate term, for it is the behavior of

the bottleneck device in a separable queueing network which acts

as the limiting resource. The method is most useful for quickly

determining the effectiveness of changes to the equipment or work

demands under light or heavy levels of multiprogramming. The

exact methods implemented through efficient algorithms provide

throughput functions for queueing networks at any level of multi-

programming and as a consequence provide the basis for an appeal-

ing technique for the analysis of terminal driven systems.

6.1 BOTTLENECK ANALYSIS

In this section we show how throughput in closed systems varies with

increasing multiprogramming load under the assumptions that work

demand and subconfiguration powers remain invariant.

-41-

6.1.1 The Bottleneck Subconfiguration

Since

=S;x) Tx (S;p)
P (3; X,)

we have the ratio of utilizations for X,X,:

(S, L;X W(S;Xi) (S;$)P

U d
T(S;'x) P(S;x-.

W(S;X,)1 W(S;X.:)

Since the ratio of utilizations is expressed in terms of load

invariant quantities (by assumption), the ratio itself is

invariant with multiprogramming load. Also, the subconfigura-

tion (say Xi) with the largest value of

W(S; Xi)

, over some time period Tx(S;X.)F (S; 7i 1

has the highest utilization under any system load. It will thus

be the first subconfiguration to attain 100% utilization when

the load is sufficiently heavy. From the forced flow law applied

to this device, we observe:

P (S, L;x i t)

0 Wd(S;xi)

P(S;X.) P(S;Xi)
I . V__(3_L (6.1.2)

Wd(S;xi) " ;xiP) - d(S;xi)

as U(S,L;Xi,P)

Equation (6.1.2) shows that system throughput is limited by the

value

P (S; Xi)
(s; X.) as the X subconfiguration saturates, that is,Wd (S; Xi) -

approaches 100% utilization. This limiting action motivates

-42-

calling such a subconfiguration a baoteneck; note that there

may be more than one in a configuration. For a given collection

of subconfigurations {iX.1 which are a partition of 'p denote the

bottleneck by a subscript "b" and now Xb(3) is the subconfiguration

for which

Wd (S; Xi)

is a maximum.
d (S; X 3

Wd (S; ×) Wd (S; xb)

Thus WdS)
P(S;Xb) =4X{(S;Xb)

Note that this choice is software unit dependent, for in a con-

figuration supporting multiple software units it is possible

that

Xb(S) ; Xb(T) for S # 2

Now as a single interaction makes its way through the configura-

tion, we have that the total time spent at any subconfiguration

X. (denoted here by Txd(S;x i) is:

wd (S;)(,
Ixdk(S;Xi) =

This is valid regardless of how many separate visits are made

to each X; on behalf of any single interaction in S (denoted 5.).

Now for all the subconfigurations Xi, the response time is:

k Wd(S;X.) k
Tb(S;t)min = iI T xd(S ;x.)

and the corresponding throughput derived using Little's Law for

N= 1 is:

X(S) = yb(1;) = Wd(S;X i)

-43-

We can now sketch a curve for throughput as in Figure 6.1.1

xo

P(L;xb)

Wd(L;Xb)

i !n

0 1 N* LOAD N

Figure 6.1.1

Bottleneck Analysis - Throughput

One asymptote is the horizontal line for the bottleneck's limit-

ing throughput of

P(S;Xb)
Wd(S;xb)"

The other asymptote is the line commencing at the origin and

passing through 2/Th(S;p) when ,V, the multiprogramming load is 2.

The approximate throughput function commences at load Y, = 1 with

corresponding throughput 2/T(S 1;) n rising monotonically and

staying below the asymptote with slope 1/Tb(S;P) in and approach-

ing (with increasing N) the horizontal asymptote drawn through

throughput value

P(S;Xb)

Wd(S; Xb) "

The load value N* where the two asymptotes intersect is where

N* P(S;Xb)
Tb(S 1 ;) min Wd(S;xb)

-44-

i -.

i.e.,

P(S; X) P(S;x) k Wi(2;(X.)

P(S= Q "~4 • - -- (6.1.2)" Wd(S;Xb) - . .r~n Wd (S;×b X /;X.

This load is called the system saturation point [KLEI76] and is

given significance in that Y > V? implies that interactions in

the system are causing mutual delays through queueing. That is,

V* is exactly the maximum number of perfectly scheduled

interactions that would cause no mutual interference. This is

because the fraction of time required at the bottleneck device

for a single interaction compared to its total service time is

7xd S; b)

Tb(S ;M)i

where Wd(S;xb)
Txd(S;xb) = p(S;Xb)

This implies that

2b(m-n similar interactions could be scheduled at X5
Txd(S;Xb) without causing interference with each other,

and this is exactly what is given by Equation (6.1.2)

R /
(RESPONSE

TIME)

K Wd(L;x.) Rmin

1 Mb Ms NO. OF TERMINALS

Figure 6.1.2

Bottleneck Analysis - Response Time

-45-

As one dare not assume that such perfect scheduling at subconfigura-

tions is in fact realized even for N < N'7, the curve sketched remains

below the sloping asymptote and the throughputs N/Tb(S ;')n. are

not achieved.

A similar type of analysis, but in terms of response time, for

terminal driven systems leads to a sketch as in Figure 6.1.2.

As before, the minimum 1-interaction response time is given by:

Twd(s;..)
mi n L P(S;7

and this is directly plotted as the horizontal asymptote. Next

we recall that when saturated, the bottleneck subconfiguration

X limits throughput to

P(S; Xb)

Wd (S;X) when Xb is saturated.

From this and the Interactive Response Time Law we have:

M Wd(S; Xb)

Tb(s 1) = - Z > - Tb(Ss;,) a (6.1.3)

and the right-hand side of the inequality is the equation for the

slanting asymptote in Figure 6.1.2.

The intersection of this asymptote with the 1.!-axis is at:

P(S;xb) _____

Mb = Z. =x (6.1.4a)
Wd(S;Xb) Txd(S;x b)

The intersection with the Tb(S,;,)min asymptote is at:

Mb* (Tb(S 1;)min + Z) Txd'S;Xb) (6.1.4b)

= N* + Ah (6.1.4c)

-46-

The significance of Mb* is like that of N* for batch systems.

,b* is that number of terminals which could be scheduled without

interference. So for M > ivb* , queueing is certain within the

system.

Improvement of the bottleneck device uncovered by the above

methods results in gains in system performance only until its

value of Txd(S;xb) decreased to the

Wd(S;X,)
Txd(S;xi) - _(Sxi)

:'--d (S; X,)

of some other subconfiguration in the system. As an example,

consider a central subsystem for a terminal system having only

a cpu and disk, and suppose the following data are collected:

P(S;cpu) = 18 Mw/s P(S;disk) = 100 Kw/s

Wd(S;cpu) = 6 Mw Wd(S;dsk) = 50 Kw

Think time Z = 15 seccnds

From the above data we have:

Txd(S;cru) = 1/3 second 7xd(S;disk) = 1/ second

So the bottleneck device is the disk. We plot the response

time asymptotes in Figure 6.1.3a by first computing the minimum

response time.

k Wd(S;xi)
Tb(S 1 ; P) =iI = 1/3 + 1,12 = 5/6 second

I min =j (S;x.)

The response time asymptote for the bottleneck device (the disk)

is given by:

Tb(SI;p) = M.Txd(S;disk) - Z M. - 20

with N* = /2+ 1 /3 1.67

12153

Mb* = 30 + 1.67 31.7 terminals.

-47-

6
R

(SEC) -- - -- -
4-

3
2

R i -
0.833

5 10 15 20 25 30 35 40 45 50
M (NUMBER OF TERMINALS)

Figure 6.1.3a

Bottleneck Analysis Example

Disk Bottleneck Action

We should realize that the cpu is a potential system bottleneck,

that is, were disk power sufficiently increased, the cpu would

become the bottleneck. This more complex characterization is

depicted in Figure 5.1.3b. Improvement obtained from a speedup

of the disk is limited by the potential bottleneck action of the

cpu.

CPU.

6

(SEC) ~ ----------
4 I

3

2

Rmin -

0.833
5 TO 15 20 25 30 35 40 45 150

1
M (NUMBER OF TERMINALS) M*

b

Figure 6.1.3b

Bottleneck Analysis Example

Potential Bottleneck Action of the CPU

-48-
IL .. ' - - i

- ' L
:Ji k, ". . . .- * - . :-

6.2 STATE SPACE BALANCE AND THE PRODUCT FORM SOLUTION

Buzen and Denning show by operational methods in [BUZE77al that the

rates of transitions in and out of system states satisfy balance

equations similar to:
P(S;x i)

. .--. (qij q)_______ -

iXj = (6.2.1)Vb(S;x.)

For all Ww(S;b) and i,j = 1,...,k

Where: o(W..) is the proportion of Tx(S;W) that the system is in

the state defined by:

_w(S;)ij = [Ww(S;X) , ""Ww(S;x) +),

Ww(SC;x,) - (S;xj),...]

and where:

W(S;q) =Ww(S;xj) ,

1. is an indicator function defined by:

I. = 0 when W('S;Xi) = 0

= 1 when Ww(S;x i) > 0

They further show that these equations have a solution of the form:
nI n2 n

1 Y2 k "'f

p(W) = - G(6.2.2)

where: The Y. depend only on workload and processor parameters.

The n. are the numbers of requests at each X,- given by

WW (S; x7)

i Wb(S;x.,

-49-

and G is a normalization constant given by:

k n.

By observing that from Equation (5.3.2)

p (W..= Pi p(W)

yn. n.+1 n .-1

since p(W.j = 1 Y0 "..
0

substitution in the balance equations (6.2.1) shows that the

product form of Equation (6.3.2) is valid if and only if equations

like:

P(S;x.) k P(S;×i)
wb(S;X + qioqoj) (6.2.3a)

are valid.

Now if we substitute for Y. the quantity 7,,
p(S3Xi) into Equation (6.2.3), we get:

P(S;xji) k P(S;Xit)

Wb(S; i (S;xi) (qij + qioqj) (6.2. 3b)

If we add the additional equation:

P(S;XoJP) P(S ') k P(S;x.,4)

Wb(S;X O) - Wd(S;i) i Wb(S;Xi) qio

-50-

We then get

-S XS~j

vd (S;4) OJW+ S -.

and when each side is multiplied by

we get
WbS~.)k W (S; X.)

D (3;x.~ X iP (6.2.3c)

But these are just the earlier Equations (5.2.5), the Work

Distribution Node Equations.

Since we also have under configuration work flow balance that

F(S; x.1) P(S; X,))

if P(S;X,,P)

Y7 is a solution of the Equations (6.2.3a),

then
P(S;X.,4J) Wd(S;X,.) Wd(S;X.)

P(S;x.) P(S;x.,4U P(S;x.)

is also a solution.

-51-

Notice that since

=(Sx,), the utilization, then -7-sis the

relative utilization of X. to X, a fact which we used in our

previous bottleneck analysis.

We thus have a solution of products of terms

n. Wd (2; Xr) n.

t (S; x,.

and here the Wd(S;Xi) are parameters of the workload and ,7 ;A.,

are parameters of the subconfigurations. The n. which define

a system state depend on the work waiting at the subconfigura-

tion Xi and the blocksize work of X., an implementation parameter.

6.3 ALGORITHMS FOR COMPUTING PERFORMANCE QUANTITIES

We now present two methodologies for the computation of system

throughputs and device queue lengths and utilizations for systems

having product form solutions. Each methodology has its distinct

point of view and each is presented in a software physics formulation.

The first is based on work by Reiser [REIS78], and is developed

from intuitively appealing principles. The second, is an adapta-

tion of Buzen's algorithm [BUZE73] applied to systems where the

average work demand increases proportionately to the number of

concurrent interactions in the system. We will present these for

the case of single job classes only, although their bases have

been extended elsewhere to multiple classes (REIS78,ROOD781.

6.3.1 Mean Value Analysis - Fixed Service/Workload Parameters

This approach to performance quantity computation depends on

these principles:

(1) Upon arrival, an interaction "sees" a system as one with

itself removed in long-term equilibrium.

-52-

(2) Little's Law is applied to the system as a whole and to

individual queues.

The first principle is a consequence of the theorem stated by

Reiser in (REIS78] and here paraphrased:

"In a closed queueing network with product-form solution,

the probability to see a state '_(S;T) upon customer arrival

when there are V1 interactions in a system is the same as

the long term equilibrium probability of W"S;) in the

system with .V-1 interactions present."

'\

Letting -tu(S ;xi.)[1] be the waiting time required by a single

visit to X,. when the system load is 3, we write:

,\b k(S; X), w (s; ,;i) [x- I

w ; N (S;x,) + p(s;i (6.3.1)

That is, the waiting time consists of the time to complete

W (S;x.) units of work from the arriving request plus the

Wz(S;X.) [N-1] units of work waiting when the interaction arrives.

Now, the interaction S, will require

Wd (S; x;
)

Wb(S;x.) separate visits to Xi, so we write for the

accumulated waiting time:

Wd(S;X.) A

Tw(S;x.) [N] = b'(S;Xi)" w(S;X i) [N]
Wd(S;X i) Ww(S;X [N-1]

[1 + Wb(S;x.) (6.3.2)

This equation gives the accumulated waiting time in terms of

the total work required at Xi by the interaction S, over its

entire life, the absolute power of X. and the average request

count

'vWw(S;x.) [N-i]
seen upon arrival.wb (S;Xi)

-53-

We now sum the accumulated waiting time over all Xi to get the

total time that the interaction is in the system, either in

queues or in service. This time is "busy" time at the configura-

tion level so we write:

k
Tb((S;X [?V] = T x(S;Xi)]V] (6.3.3)

Note that we have made explicit use of our assumption that an

interaction is present only at a single subconfiguration of a

partition of '4 at any given instant.

we now apply Little's Law to the system having N similar trans-

actions to get the throughput of work:

P(S;p) IN] = Tb(5,; [NI (6.3.4a)

or for the interaction throughput:

(S) [IVNI = P(S;[N]N (6.3.4b)

0 Wd(S;) - Tb(S i;i) [N]

The average work waiting (including that in service) at a

device is given by the application of Little's Law at that sub-

configuration:

A

7Ww(S;X.) [N] = Tw(S ;xi) [NI P(S;xi,) [N]

First multiplying the right hand side by 1 in the form of

Wd(S;X i) Wb(S;xi)

Wb(S;x.) Wd(S;Xi)

we get:

?(S;xiA) [N]
w(S;x.) [Al] -- wb(S;xi. d~) - . l('S;X<. [N]

'-5Wd(S;)

-54-

and multiplying the right-hand side again by 1 in the form of

and recalling that

,vd(S;xJ)

Wd C)>w;sX = ?(S;.,W') we get:

_j(7; j ,..,x) Wd(X; (6..5a
(S;) [NI

,vw ; .)i/ [I] = Wb(5;x i) /dS; "w(") ['] 6.5a

Since the recursion (6.3.1) is in terms of the average request

count

Vw(S;X-)
it is more convenient to write:

WwS x)I] =P S@ N g (SI X.)[(6.3.5b)
Wb (S; Xi) Wd(S;) (

Or in terms of the interaction throughput:

Ww(S;x i) EN]
o(S;Xi)_ = X (5) [N] Tw(S;xi) [I (6.3.5c)
Wb(S;X.) 0 7

Finally we derive the utilization of xi,U(S;xi,z,) directly from:
P(5;Xi,)[N)

U(S;xi,) = (;xP)P(S;xi)

Wd(S;.)

P(S;xi) Wd(S; i)Wd(S;x.)Wd(S;x i)

psP(S;)E[N)_ 7 (6.3.6a)
Wd(S;p) P(S;x.)

Or in terms of interaction throughput:

Wd(S;Xi)
U(S;xij) XO(S) [N-ps;Xi) (6.3.6b)

-55-

6.3.1.1 ,'n ExZ.-Le - Vean VaZue AnaZsis

We apply the "mean value" algorithms derived in the previous

section to an example interactive system.

M TERMINALS
Z THINK TIME

- /~N~ ~OUTr -

CENTRAL
SUBSYSTEM

DEVICES WORKLOAD

P(L;CPU) = 5 Mw/s Wd(L;CPU) - 750 Kw

P(L;disk) 100 Kw/s Wd(L;disk) 20 Kw

Figure 6.3.1

Example Interactive System

We will use our algorithms to solve the closed central subsystem,

whose interaction flow is indicated by the dotted line in Figure

6.3.1. The analysis of this system together with its terminals

will be considered in Section 6.4. First, let us sketch a solu-

tion using the bottleneck analysis techniques of the earlier part

of this discussion.

From the provided data:

Wd(Scpu) 750 x 103P(=p) , = 0. 15 secondsP(S;cpu) 5 x 10 6

and

Wd(S;disk) 20 x 1 02 seconds
P(S;disk) 100 X 103

-56-

So the disk is the bottleneck device. The asymptotic system

throughput (determined by the disk) is:

X0(S)ma x 110.2 = 5 interacr;ions/seccnd

The minimum (1 - interaction) response time is:

Tb(S,,;) = 0.15 + 0.2 = 0.35 seconds

so the 1 - interaction throughput is:

1 .b~s (I)r = 2/0.35 = 2.86 interactions/secod

Finally, the system saturation point is:

Wd (S; X.
Pi (m.-disk) -1 P(Sxi

* wd(S;disk) i(3;X.)

= 1/0.2 (0.15 + 0.2) = 1.75

The resulting throughput function is sketched in Figure 6.3.2

x0(JOBS/SEC) 6--

XOMax 5
4-'

--.- = 2.86Rm n

I.

1 .01,,2. 0 3.0 4.0 5.0

N* a 1.75 N - # OF JOBS

Figure 6.3.2

Central System Throughput - Bottleneck Analysis

L -57-

We now apply the algorithms of the previous section to compute

the exact performance quantities. We start the recursion by

setting WW(S;Xi)[O = 0. The process and results are summarized

in Table 6.3.1. Note by observing the device utilization columns

in the table that, as expected, it is the disk which shows the

highest utilization at each level of multiprogramming load.

The interaction throughput function X (3)[N] is plotted in

Figure 6.3.3 and realizes in exact form the approximating

asymptotic sketch of Figure 6.3.2.

-58-

-~ 4

1-1 00 LA) %D 00 0) I m en 0 o

Cfl N 1. mi a N -4 CN N~ v

o CC C C; C C

z ca
o 10

E-. ~ ~ U N) N -m Na4-
,a LA r- co NO NN 0 N0 N- T

'334

z CA

-4lU -4 -1N NEN C

VV 0) N- IV LA N C - r, N - r
CACA -4 -4) N- M' Cl m LA rfl N
CN 1

00 41 44 LA LA1

x r_

n NN C- -) LA o Nn LA en N~~ C C) N ' N C A N N

N4 -4

E-44

CA IT O 0 Cc
-4 M- r- -f4/ LA -4 00 Ln N '

U) 0

-4

V0 C U4 Ln r N w LA 1--4 L

z) N () -T LA N D r- C o (n 0L

-C59

>4

<
'-4

u

C).

E-44

E-4

-60

mmd

r

6.3.2 Buzen's Algorithm With Overhead Performance Degradation

In [BUZE73I Buzen demonstrates efficient algorithms for the com-

putation of the normalizing constant, G, in the product form

solution. In a subsequent paper [BUZE77] he shows how J computed

at various levels of multiprogramming load denoted by 5[.T) are

sufficient in themselves for the computation of the performance

quantities viz.,

X (S)[N] = G[I-I] (6.3.7)
0 G(NI

Wd(S;xi) G(N-1]
x. =I • GU-(6.3.8)(o X, [11 p(s;Xi) G [N]

And the recursion for queue lengths:

Ww(S;Xi) INJ W(S;Xi) (V-1]
= U(S;x.,)[N].1 Wb(S;xi)

Wb(S;Xi) U(;"

in which WW(S;Xi)[0] = 0 (6.3.9)

Buzen also shows a generalized version of the algorithm in [BUZE73]

which admits the use of load dependent servers, i.e., load dependent

ratios

Wd(S;X i)

P(S;x.) in our terminology.

We first repeat the expression of the recursive algorithm here

for the general term g(nm) in the recursion and then further

develop a special case which has a simple form. First Buzen gives:

n (YY)

j=Or

with g(O,r) = 1

I* if ol= 0
00

and A (j) = I a(i)} if > 0r i=1 r!

-61-

The 2, (i) are the arbitrary load dependent factors which divide

the

Wd(S;Xr)

r P(S;x)

to express the variation of service time at each load i.

Now suppose that for our special case we have that:

Wd(S;x i) [:Vl = (1+D)Wd(S;xi) [N-l] (6.3.11)

3 2,3,'."

where D is a constant factor of increase in interaction work

demand for each increment of multiprogramming load over one.

Defining the interaction demand execution time:

Wd(S;x,.) IN]
2xd(S;X.) (IN] E I

P(S;x.)

and letting Txd(S;x i) [I1 be more simply denoted as Txd(S;X.),

we have:

Txd(S;x i) [n] = Txd(S;x i)•(2+D) n - 1

Now the t-h term in the sum in Equation (6.3.10) is:

[Txd(S;xi)]M. (1+D) M-1. (l+D) m-2... (1+D)m-m

which we may rewrite as:

[Txd(S;Xi)1m+D) S(m -1) where S(k) = i

Figure 6.3.4 conceptualize6 the recursion in a two dimensional

array. Each column represents a computation with parameters for
th

a different device. The zero- element in each column contains
tha "one." There is a zero- column with entries of zero for loads

1 through N to start the recursion. One proceeds by computing

g(n,r) by progressing down a column beginning with r=!. The

terms summed as indicated give g(n,r) and the final column has

the elements that correspond to the elements GfN] of Equations

(6.3.7, 6.3.8, 6.3.9).

-62-

. .C

7I z
c0

ui C14

+ + + + ++

*U -le -e

c C I4
7d. U / - - -z~

x J

* 2 2 2
LU * .~ -~0 C14

C1

C-4

C.-4 7

I-60

. .

-,I I __ __ _

J :3

r-4 0

i ~ ~ ~ir , i; . i

___ _j_______

t ii

II__I I I

-64-.

'ii,

6.3.2.1 :Ire Example System - ConJirua:i n

We can now incorporate overhead work demand increases according

to the scheme just developed into the system of Section 6.3.1.1.

Recall:

Txd(S; cp'u. Wd(S---u)

= P(S;cpu = 7_75 seconds

Wd(S;isk) =

Td(S;disk) = P(S;disk1 0.2 3eccnds

For the disk we take a constant 5% increase in overhead work

for each increment in load. For the cpu we take possible increases

to be 5%, 10%, and 15% and examine each case. The resulting

predicted throughputs are given in Table 6.3.2. These are

plotted in Figure 6.3. 5 and show what is usual for systems with

multiprogramming load - increasing overheads, the throughput

function achieves a maximum and then starts a decline for

further increases in load.

6.3.2.2 A Graphical Decomposition Scution

We now return to our example system as originally given; a

collection of terminals interacting with the central subsystem

just analyzed. Courtois [COUR75] has observed that systems

are nearZy completely decorroosable into groups of smaller sub-

systems if the state changes between the subsystems occur at

a rate much slower than those within the subsystems. Thus,

observing that the rate of interaction submission from the

terminals for M signed-on terminals is:

M - N
where N is the number of interactions in process

in the central subsystem,

and assuming that the maximum submission rate, given by M/Z,

is much less than the rate of state transitions within the

central subsystem, we can treat the composite as the "joining"

of two equivalent components each with characteristics separately

determined as a function of the load N. A useful graphical

-65-

144
~ ~~D Ln N -N -4 1-4 co

~~ L m L n r- r, LA -i o~ - -
4 4 LA 14 N 4 14 1; 14 0 4 N

E 0

CL z) -a.

0i 4J 14mE

C)4

Cf~~~~ ~ U-) Ln 040).4 d~ f

C) (V (n I v m M

4-))

-4-4

method for this joining process is conceptually shown in

Figure 6.3.6. A typical central subsystem throughput function

is plotted and its intersections with the terminal subsystem

interaction submission function

- N
7 are indicated by Na, Nb and NIc.

M N0

Na Nb Nc

NUMBER OF ACTIVE TRANSACTIONS

Figure 6.3.6

Decomposition Analysis - Conceptual

Each of these points is one where interaction submission rate

equals the interaction throughput (completion rate) of the

central subsystem. However, of the three solutions only .a and

N are stable, that is, these points have the property of attract-

ing the subsystem from neiqhboring values of N. The point Nb,

though a solution, does not have this property. To show this,

first consider a stable point such as Na. If the number of

interactions in the central subsystem should increase to a

value Na + An, the central subsystem responds with an increased

throughput which exceeds the submission rate and thus tends to

return the subsystem interaction count to Na. Similarly, a

-67-

decrease to Va - -n is met with a lowering of throughput below

the submission rate. This results in increased congestion

raising the subsystem interaction count back towards Na. At

.Nb, however, an increase to Nb + An is met with a decrease

of throughput thus causing further and further congestion until

stability is reached at VC. A decrease to ,b - An is responded

to with increased throughput, driving the subsystem towards .a.

Now we would like to stablize the systems at a point like Va

to the left of the maximal throughput in the interest of mini-

mizing the response time observed by a terminal user. This

time, given by an application of Little's Law, is:

=Na
Tb (S; z) = Va(S

X (S)
0

where XY(S) is the throughput at Na.

The effects of varying the number of signed-on terminals, M,

in our example can now be observed by indicating with lines or

tick marks, the intersection of the lines

M -N with the central subsystem throughput functions.

7

This is done in Figure 6.3.7 and we make several observations

based on the number of terminals signed-on and the cpu degrada-

tion factor which is operative. Specifically for this example:

(i) For 40 terminals, there is no intersection, Na, with

any of the throughput functions such that the intersec-

tion is to the left of the peak throughput value.

(ii) For 35 terminals there are such intersections only for

the cases where the cpu degradation is 0.05 or 0.10.

If we were Uncertain that the cpu degradation was within

these limits, we should consider the choice of this

number of terminals to be served to be at risk of not

providing acceptable response time.

-68-

. - + - -- - - " ,. - -. - -

L TT

1 W_ I{ ..

I J

i I ; i I Z

_ * I- . _- ,. -. ,

._ _ ,_ _ .1 ',

,__ _ . I , 0

_ _ _ _ ,---* ,-~-- , I"

, , Ii ' I "

i I I~ I ll1 c

Id

f : i ,l i I _________ ,
I *I , , , , , ,

-69-

(iii) For the other values of M shown (28, 30, 32) we have

all three cpu degradation factors providing solution

points, Ya, to the left of the maximal throughputs.

So we are at the least risk of ending up stabilized

at a solution point like .Vc of the conceptual discussion

corresponding to a low throughput and relatively large

number of interactions in the system.

The response times corresponding to the solution points to the

left of maximum throughput are given by:

Tb(S,;P) = Na

x0:
and are summarized in Table 6.3.3 below.

M DEGR(cpu) = 0.05 DEGR(cpu) = 0.1 DEGR(cpu) = 0.15
(Terminals) X (S) Na Tb (S1 ;) Xo(S) Na T (S,; 4)) X0 (S) Na :b (2 ;p)

28 3.5 1.45 0.44 3.3 1.55 0.47 3.3 1.6 0.48

30 3.55 1.8 0.51 3.55 1.8 0.51 3.5 2.0 0.57

32 3.75 2.2 0.59 3.75 2.2 0.59 3.65 2.6 0.71

35 3.95 3.4 0.86 3.9 3.6 0.92 - - -

Table 6.3.3

-70-

REFERENCES

[BUZE73] Buzen, J. P., "Computational Algorithms for Closed
Queueing Networks with Exonential Servers", Communications
of the ACM, Vol. 16, No. 9 (Sept. 1973), pp. 527-531.

[BUZE77a] Buzen, J. P. and Denning, P. J., "Operational Analysis of
Queueing Networks", published by the authors (1977).

[BUZE77b] Buzen, J. P., "Operational Analysis: An AZternative to
Stochastic Modelling", BGS Systems, Inc. Report, Lincoln,
Mass. (Nov. 1977).

[COUR75] Courtois, P. J., "Decomposability, Instabilities and
Saturation in Multiprogramning Systems", Communications
of the ACM, Vol. 18, No. 7 (July 1975), pp. 371-376.

[DENN78] Denning, P. J., and Buzen, J. P., "The Operational Analysis
of Queueing Network Models", Computing Surveys, Vol. 10,
No. 3 (Sept., 1978) pp. 225-261.

[KLEI76] Kleinrock, L., Queueing Systems, Vol. II, Wiley (1976).

[KOLE76] Kolence, K. W., An Introduction to Software Physics,
Institute for Software Engineering, Palo Alto, CA (1976).

[KOVA79] Kovach, R. P., "Foundations and Concepts of Software Physics",
Institute for Software Engineering, Palo Alto, CA (to appear).

[NEWE71] Newell, G. F., "Applications of Queueing Theory",
Chapman & Hall, Ltd. (London), 1971.

[REIS79] Reiser, M., "Vean Value Analysis of /ueueing Networks",
IBM Research Report RC 72-28, Yorktown Heights (1978).

(ROOD78] Roode, J. D., "Multiclass Operational Analysis of Queueing
Networks", Technical Report, National Research Institute
for Mathematical Sciences, (TWISK 56), Pretoria (Nov. 1978).

-71-

,DATE.

